Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Gut Microbes ; 14(1): 2073131, 2022.
Article in English | MEDLINE | ID: covidwho-2321505

ABSTRACT

Protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and associated clinical sequelae requires well-coordinated metabolic and immune responses that limit viral spread and promote recovery of damaged systems. However, the role of the gut microbiota in regulating these responses has not been thoroughly investigated. In order to identify mechanisms underpinning microbiota interactions with host immune and metabolic systems that influence coronavirus disease 2019 (COVID-19) outcomes, we performed a multi-omics analysis on hospitalized COVID-19 patients and compared those with the most severe outcome (i.e. death, n = 41) to those with severe non-fatal disease (n = 89), or mild/moderate disease (n = 42), that recovered. A distinct subset of 8 cytokines (e.g. TSLP) and 140 metabolites (e.g. quinolinate) in sera identified those with a fatal outcome to infection. In addition, elevated levels of multiple pathobionts and lower levels of protective or anti-inflammatory microbes were observed in the fecal microbiome of those with the poorest clinical outcomes. Weighted gene correlation network analysis (WGCNA) identified modules that associated severity-associated cytokines with tryptophan metabolism, coagulation-linked fibrinopeptides, and bile acids with multiple pathobionts, such as Enterococcus. In contrast, less severe clinical outcomes are associated with clusters of anti-inflammatory microbes such as Bifidobacterium or Ruminococcus, short chain fatty acids (SCFAs) and IL-17A. Our study uncovered distinct mechanistic modules that link host and microbiome processes with fatal outcomes to SARS-CoV-2 infection. These features may be useful to identify at risk individuals, but also highlight a role for the microbiome in modifying hyperinflammatory responses to SARS-CoV-2 and other infectious agents.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Anti-Inflammatory Agents , Cytokines , Gastrointestinal Microbiome/genetics , Humans , SARS-CoV-2
2.
Nat Immunol ; 24(4): 604-611, 2023 04.
Article in English | MEDLINE | ID: covidwho-2273312

ABSTRACT

Infection with severe acute respiratory syndrome coronavirus 2 associates with diverse symptoms, which can persist for months. While antiviral antibodies are protective, those targeting interferons and other immune factors are associated with adverse coronavirus disease 2019 (COVID-19) outcomes. Here we discovered that antibodies against specific chemokines were omnipresent post-COVID-19, were associated with favorable disease outcome and negatively correlated with the development of long COVID at 1 yr post-infection. Chemokine antibodies were also present in HIV-1 infection and autoimmune disorders, but they targeted different chemokines compared with COVID-19. Monoclonal antibodies derived from COVID-19 convalescents that bound to the chemokine N-loop impaired cell migration. Given the role of chemokines in orchestrating immune cell trafficking, naturally arising chemokine antibodies may modulate the inflammatory response and thus bear therapeutic potential.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Autoantibodies , Post-Acute COVID-19 Syndrome , Chemokines
3.
iScience ; 26(1): 105726, 2023 Jan 20.
Article in English | MEDLINE | ID: covidwho-2243174

ABSTRACT

Memory B cells (MBCs) generate rapid antibody responses upon secondary encounter with a pathogen. Here, we investigated the kinetics, avidity, and cross-reactivity of serum antibodies and MBCs in 155 SARS-CoV-2 infected and vaccinated individuals over a 16-month time frame. SARS-CoV-2-specific MBCs and serum antibodies reached steady-state titers with comparable kinetics in infected and vaccinated individuals. Whereas MBCs of infected individuals targeted both prefusion and postfusion Spike (S), most vaccine-elicited MBCs were specific for prefusion S, consistent with the use of prefusion-stabilized S in mRNA vaccines. Furthermore, a large fraction of MBCs recognizing postfusion S cross-reacted with human betacoronaviruses. The avidity of MBC-derived and serum antibodies increased over time resulting in enhanced resilience to viral escape by SARS-CoV-2 variants, including Omicron BA.1 and BA.2 sublineages, albeit only partially for BA.4 and BA.5 sublineages. Overall, the maturation of high-affinity and broadly reactive MBCs provides the basis for effective recall responses to future SARS-CoV-2 variants.

4.
Sci Immunol ; 8(81): eade0958, 2023 03 17.
Article in English | MEDLINE | ID: covidwho-2213868

ABSTRACT

Emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants diminishes the efficacy of vaccines and antiviral monoclonal antibodies. Continued development of immunotherapies and vaccine immunogens resilient to viral evolution is therefore necessary. Using coldspot-guided antibody discovery, a screening approach that focuses on portions of the virus spike glycoprotein that are both functionally relevant and averse to change, we identified human neutralizing antibodies to highly conserved viral epitopes. Antibody fp.006 binds the fusion peptide and cross-reacts against coronaviruses of the four genera, including the nine human coronaviruses, through recognition of a conserved motif that includes the S2' site of proteolytic cleavage. Antibody hr2.016 targets the stem helix and neutralizes SARS-CoV-2 variants. Antibody sd1.040 binds to subdomain 1, synergizes with antibody rbd.042 for neutralization, and, similar to fp.006 and hr2.016, protects mice expressing human angiotensin-converting enzyme 2 against infection when present as a bispecific antibody. Thus, coldspot-guided antibody discovery reveals donor-derived neutralizing antibodies that are cross-reactive with Orthocoronavirinae, including SARS-CoV-2 variants.


Subject(s)
Antibodies, Neutralizing , COVID-19 , Humans , Animals , Mice , SARS-CoV-2 , Epitopes , Spike Glycoprotein, Coronavirus , Antibodies, Viral , Neutralization Tests
5.
Respiration ; 102(2): 120-133, 2023.
Article in English | MEDLINE | ID: covidwho-2194324

ABSTRACT

BACKGROUND: Lung function impairment persists in some patients for months after acute coronavirus disease 2019 (COVID-19). Long-term lung function, radiological features, and their association remain to be clarified. OBJECTIVES: We aimed to prospectively investigate lung function and radiological abnormalities over 12 months after severe and non-severe COVID-19. METHODS: 584 patients were included in the Swiss COVID-19 lung study. We assessed lung function at 3, 6, and 12 months after acute COVID-19 and compared chest computed tomography (CT) imaging to lung functional abnormalities. RESULTS: At 12 months, diffusion capacity for carbon monoxide (DLCOcorr) was lower after severe COVID-19 compared to non-severe COVID-19 (74.9% vs. 85.2% predicted, p < 0.001). Similarly, minimal oxygen saturation on 6-min walk test and total lung capacity were lower after severe COVID-19 (89.6% vs. 92.2%, p = 0.004, respectively, 88.2% vs. 95.1% predicted, p = 0.011). The difference for forced vital capacity (91.6% vs. 96.3% predicted, p = 0.082) was not statistically significant. Between 3 and 12 months, lung function improved in both groups and differences in DLCO between non-severe and severe COVID-19 patients decreased. In patients with chest CT scans at 12 months, we observed a correlation between radiological abnormalities and reduced lung function. While the overall extent of radiological abnormalities diminished over time, the frequency of mosaic attenuation and curvilinear patterns increased. CONCLUSIONS: In this prospective cohort study, patients who had severe COVID-19 had diminished lung function over the first year compared to those after non-severe COVID-19, albeit with a greater extent of recovery in the severe disease group.


Subject(s)
COVID-19 , Respiratory Insufficiency , Humans , Prospective Studies , Switzerland/epidemiology , Lung/diagnostic imaging
6.
iScience ; 2022.
Article in English | EuropePMC | ID: covidwho-2147477

ABSTRACT

Memory B cells (MBCs) generate rapid antibody responses upon secondary encounter with a pathogen. Here, we investigated the kinetics, avidity and cross-reactivity of serum antibodies and MBCs in 155 SARS-CoV-2 infected and vaccinated individuals over a 16-month timeframe. SARS-CoV-2-specific MBCs and serum antibodies reached steady-state titers with comparable kinetics in infected and vaccinated individuals. Whereas MBCs of infected individuals targeted both pre- and postfusion Spike (S), most vaccine-elicited MBCs were specific for prefusion S, consistent with the use of prefusion-stabilized S in mRNA vaccines. Furthermore, a large fraction of MBCs recognizing postfusion S cross-reacted with human betacoronaviruses. The avidity of MBC-derived and serum antibodies increased over time resulting in enhanced resilience to viral escape by SARS-CoV-2 variants, including Omicron BA.1 and BA.2 sub-lineages, albeit only partially for BA.4 and BA.5 sublineages. Overall, the maturation of high-affinity and broadly-reactive MBCs provides the basis for effective recall responses to future SARS-CoV-2 variants. Graphical

7.
Nature ; 593(7857): 136-141, 2021 05.
Article in English | MEDLINE | ID: covidwho-2114170

ABSTRACT

Transmission of SARS-CoV-2 is uncontrolled in many parts of the world; control is compounded in some areas by the higher transmission potential of the B.1.1.7 variant1, which has now been reported in 94 countries. It is unclear whether the response of the virus to vaccines against SARS-CoV-2 on the basis of the prototypic strain will be affected by the mutations found in B.1.1.7. Here we assess the immune responses of individuals after vaccination with the mRNA-based vaccine BNT162b22. We measured neutralizing antibody responses after the first and second immunizations using pseudoviruses that expressed the wild-type spike protein or a mutated spike protein that contained the eight amino acid changes found in the B.1.1.7 variant. The sera from individuals who received the vaccine exhibited a broad range of neutralizing titres against the wild-type pseudoviruses that were modestly reduced against the B.1.1.7 variant. This reduction was also evident in sera from some patients who had recovered from COVID-19. Decreased neutralization of the B.1.1.7 variant was also observed for monoclonal antibodies that target the N-terminal domain (9 out of 10) and the receptor-binding motif (5 out of 31), but not for monoclonal antibodies that recognize the receptor-binding domain that bind outside the receptor-binding motif. Introduction of the mutation that encodes the E484K substitution in the B.1.1.7 background to reflect a newly emerged variant of concern (VOC 202102/02) led to a more-substantial loss of neutralizing activity by vaccine-elicited antibodies and monoclonal antibodies (19 out of 31) compared with the loss of neutralizing activity conferred by the mutations in B.1.1.7 alone. The emergence of the E484K substitution in a B.1.1.7 background represents a threat to the efficacy of the BNT162b2 vaccine.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/therapy , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Synthetic/immunology , Aged , Aged, 80 and over , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/isolation & purification , Antibodies, Neutralizing/isolation & purification , Antibodies, Viral/isolation & purification , COVID-19/metabolism , COVID-19/virology , Female , HEK293 Cells , Humans , Immune Evasion/genetics , Immune Evasion/immunology , Immunization, Passive , Male , Middle Aged , Models, Molecular , Mutation , Neutralization Tests , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Vaccines, Synthetic/administration & dosage , COVID-19 Serotherapy
9.
J Clin Med ; 11(15)2022 Aug 04.
Article in English | MEDLINE | ID: covidwho-2033019

ABSTRACT

We would like to thank Böning et al. for all the important issues raised in the present commentary [...].

10.
Frontiers in medicine ; 8, 2021.
Article in English | EuropePMC | ID: covidwho-1957932

ABSTRACT

Introduction: Severe respiratory syndrome coronavirus 2 (SARS-CoV-2) uses the androgen receptor (AR), through ACE2 receptor and TMPRSS2, to enter nasal and upper airways epithelial cells. Genetic analyses revealed that HSD3B1 P1245C polymorphic variant increases dihydrotestosterone production and upregulation of TMPRSS2 with respect to P1245A variant, thus possibly influencing SARS-CoV-2 infection. Our aim was to characterize the HSD3B1 polymorphism status and its potential association with clinical outcomes in hospitalized patients with COVID-19 in Southern Switzerland. Materials and Methods: The cohort included 400 patients hospitalized for COVID-19 during the first wave between February and May 2020 in two different hospitals of Canton Ticino. Genomic DNA was extracted from formalin-fixed paraffin-embedded tissue blocks, and HSD3B1 gene polymorphism was evaluated by Sanger sequencing. Statistical associations were verified using different test. Results:HSD3B1 polymorphic variants were not associated with a single classical factor related to worse clinical prognosis in hospitalized patients with SARS-CoV-2. However, in specific subgroups, HSD3B1 variants played a clinical role: intensive care unit admission was more probable in patients with P1245C diabetes compared with P1245A individuals without this comorbidity and death was more associated with hypertensive P1245A>C cases than patients with P1245A diabetes without hypertension. Discussion: This is the first study showing that HSD3B1 gene status may influence the severity of SARS-CoV-2 infection. If confirmed, our results could lead to the introduction of HSD3B1 gene status analysis in patients infected with SARS-CoV-2 to predict clinical outcome.

11.
Science ; 377(6607): 735-742, 2022 08 12.
Article in English | MEDLINE | ID: covidwho-1949931

ABSTRACT

The coronavirus spike glycoprotein attaches to host receptors and mediates viral fusion. Using a broad screening approach, we isolated seven monoclonal antibodies (mAbs) that bind to all human-infecting coronavirus spike proteins from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immune donors. These mAbs recognize the fusion peptide and acquire affinity and breadth through somatic mutations. Despite targeting a conserved motif, only some mAbs show broad neutralizing activity in vitro against alpha- and betacoronaviruses, including animal coronaviruses WIV-1 and PDF-2180. Two selected mAbs also neutralize Omicron BA.1 and BA.2 authentic viruses and reduce viral burden and pathology in vivo. Structural and functional analyses showed that the fusion peptide-specific mAbs bound with different modalities to a cryptic epitope hidden in prefusion stabilized spike, which became exposed upon binding of angiotensin-converting enzyme 2 (ACE2) or ACE2-mimicking mAbs.


Subject(s)
Angiotensin-Converting Enzyme 2 , Antibodies, Monoclonal , Antibodies, Viral , Broadly Neutralizing Antibodies , COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Angiotensin-Converting Enzyme 2/chemistry , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/isolation & purification , Antibodies, Viral/immunology , Antibodies, Viral/isolation & purification , Broadly Neutralizing Antibodies/immunology , COVID-19/immunology , Humans , Peptides/immunology , Protein Binding , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology
12.
BMJ Open Respir Res ; 9(1)2022 04.
Article in English | MEDLINE | ID: covidwho-1807446

ABSTRACT

BACKGROUND: The Clinical Frailty Scale (CFS) is increasingly used for clinical decision making in acute care but little is known about frailty after COVID-19. OBJECTIVES: To investigate frailty and the CFS for post-COVID-19 follow-up. METHODS: This prospective multicentre cohort study included COVID-19 survivors aged ≥50 years presenting for a follow-up visit ≥3 months after the acute illness. Nine centres retrospectively collected pre-COVID-19 CFS and prospectively CFS at follow-up. Three centres completed the Frailty Index (FI), the short physical performance battery (SPPB), 30 s sit-to-stand test and handgrip strength measurements. Mixed effect logistic regression models accounting for repeated measurements and potential confounders were used to investigate factors associated with post-COVID-19 CFS. Criterion and construct validity were determined by correlating the CFS to other concurrently assessed frailty measurements and measures of respiratory impairment, respectively. RESULTS: Of the 288 participants 65% were men, mean (SD) age was 65.1 (9) years. Median (IQR) CFS at follow-up was 3 (2-3), 21% were vulnerable or frail (CFS ≥4). The CFS was responsive to change, correlated with the FI (r=0.69, p<0.001), the SPPB score (r=-0.48, p<0.001) (criterion validity) and with the St George's Respiratory Questionnaire score (r=0.59, p<0.001), forced vital capacity %-predicted (r=-0.25, p<0.001), 6 min walk distance (r=-0.39, p<0.001) and modified Medical Research Council (mMRC) (r=0.59, p<0.001). Dyspnoea was significantly associated with a higher odds for vulnerability/frailty (per one mMRC adjusted OR 2.01 (95% CI 1.13 to 3.58), p=0.02). CONCLUSIONS: The CFS significantly increases with COVID-19, and dyspnoea is an important risk factor for post-COVID-19 frailty and should be addressed thoroughly.


Subject(s)
COVID-19 , Fatigue Syndrome, Chronic , Frailty , Cohort Studies , Dyspnea/epidemiology , Dyspnea/etiology , Female , Frailty/diagnosis , Frailty/epidemiology , Hand Strength , Humans , Male , Prospective Studies , Retrospective Studies
13.
J Clin Med ; 11(3)2022 Jan 31.
Article in English | MEDLINE | ID: covidwho-1667220

ABSTRACT

Critical COVID-19 is a life-threatening disease characterized by severe hypoxemia with complex pathophysiological mechanisms that are not yet completely understood. A pathological shift in the oxyhemoglobin curve (ODC) was previously described through the analysis of p50, intended as the oxygen tension at which hemoglobin is saturated by oxygen at 50%. The aim of this study was to analyze Hb-O2 affinity features over time in a cohort of critically ill COVID-19 patients, through the analysis of ODC p50 behavior. A retrospective analysis was performed; through multiple arterial blood gas (ABG) analyses, each p50 was calculated and normalized according to PaCO2, pH and temperature; patients' p50 evolution over time was reported, comparing the first 3 days (early p50s) with the last 3 days (late p50s) of ICU stay. A total of 3514 ABG analyses of 32 consecutive patients were analyzed. The majority of patients presented a left shift over time (p = 0.03). A difference between early p50s and late p50s was found (20.63 ± 2.1 vs. 18.68 ± 3.3 mmHg, p = 0.03); median p50 of deceased patients showed more right shifts than those of alive patients (24.1 vs. 18.45 mmHg, p = 0.01). One-way ANOVA revealed a p50 variance greater in the early p50s (σ2 = 8.6) than in the late p50s (σ2 = 3.84), associated with a reduction over time (p < 0.001). Comparing the Hb-O2 affinity in critically ill COVID-19 patients between ICU admission and ICU discharge, a temporal shift in the ODC was observed.

14.
Nature ; 602(7898): 664-670, 2022 02.
Article in English | MEDLINE | ID: covidwho-1616991

ABSTRACT

The recently emerged SARS-CoV-2 Omicron variant encodes 37 amino acid substitutions in the spike protein, 15 of which are in the receptor-binding domain (RBD), thereby raising concerns about the effectiveness of available vaccines and antibody-based therapeutics. Here we show that the Omicron RBD binds to human ACE2 with enhanced affinity, relative to the Wuhan-Hu-1 RBD, and binds to mouse ACE2. Marked reductions in neutralizing activity were observed against Omicron compared to the ancestral pseudovirus in plasma from convalescent individuals and from individuals who had been vaccinated against SARS-CoV-2, but this loss was less pronounced after a third dose of vaccine. Most monoclonal antibodies that are directed against the receptor-binding motif lost in vitro neutralizing activity against Omicron, with only 3 out of 29 monoclonal antibodies retaining unaltered potency, including the ACE2-mimicking S2K146 antibody1. Furthermore, a fraction of broadly neutralizing sarbecovirus monoclonal antibodies neutralized Omicron through recognition of antigenic sites outside the receptor-binding motif, including sotrovimab2, S2X2593 and S2H974. The magnitude of Omicron-mediated immune evasion marks a major antigenic shift in SARS-CoV-2. Broadly neutralizing monoclonal antibodies that recognize RBD epitopes that are conserved among SARS-CoV-2 variants and other sarbecoviruses may prove key to controlling the ongoing pandemic and future zoonotic spillovers.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Antigenic Drift and Shift/immunology , Broadly Neutralizing Antibodies/immunology , Neutralization Tests , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antigenic Drift and Shift/genetics , COVID-19 Vaccines/immunology , Cell Line , Convalescence , Epitopes, B-Lymphocyte/immunology , Humans , Immune Evasion , Mice , SARS-CoV-2/chemistry , SARS-CoV-2/classification , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Vesiculovirus/genetics
15.
PLoS One ; 16(11): e0260318, 2021.
Article in English | MEDLINE | ID: covidwho-1542187

ABSTRACT

INTRODUCTION: The COVID-19 pandemic required careful management of intensive care unit (ICU) admissions, to reduce ICU overload while facing limitations in resources. We implemented a standardized, physiology-based, ICU admission criteria and analyzed the mortality rate of patients refused from the ICU. MATERIALS AND METHODS: In this retrospective observational study, COVID-19 patients proposed for ICU admission were consecutively analyzed; Do-Not-Resuscitate patients were excluded. Patients presenting an oxygen peripheral saturation (SpO2) lower than 85% and/or dyspnea and/or mental confusion resulted eligible for ICU admission; patients not presenting these criteria remained in the ward with an intensive monitoring protocol. Primary outcome was both groups' survival rate. Secondary outcome was a sub analysis correlating SpO2 cutoff with ICU admission. RESULTS: From March 2020 to January 2021, 1623 patients were admitted to our Center; 208 DNR patients were excluded; 97 patients were evaluated. The ICU-admitted group (n = 63) mortality rate resulted 15.9% at 28 days and 27% at 40 days; the ICU-refused group (n = 34) mortality rate resulted 0% at both intervals (p < 0.001). With a SpO2 cut-off of 85%, a significant correlation was found (p = 0.009), but with a 92% a cut-off there was no correlation with ICU admission (p = 0.26). A similar correlation was also found with dyspnea (p = 0.0002). CONCLUSION: In COVID-19 patients, standardized ICU admission criteria appeared to safely reduce ICU overload. In the absence of dyspnea and/or confusion, a SpO2 cutoff up to 85% for ICU admission was not burdened by negative outcomes. In a pandemic context, the SpO2 cutoff of 92%, as a threshold for ICU admission, needs critical re-evaluation.


Subject(s)
COVID-19/epidemiology , COVID-19/physiopathology , Critical Illness , Hospitalization , Adult , Aged , Aged, 80 and over , COVID-19/complications , Female , Humans , Hypoxia/complications , Intensive Care Units , Male , Middle Aged , Partial Pressure , Referral and Consultation , Survival Rate
16.
Science ; 373(6559): 1109-1116, 2021 Sep 03.
Article in English | MEDLINE | ID: covidwho-1341301

ABSTRACT

The spillovers of betacoronaviruses in humans and the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants highlight the need for broad coronavirus countermeasures. We describe five monoclonal antibodies (mAbs) cross-reacting with the stem helix of multiple betacoronavirus spike glycoproteins isolated from COVID-19 convalescent individuals. Using structural and functional studies, we show that the mAb with the greatest breadth (S2P6) neutralizes pseudotyped viruses from three different subgenera through the inhibition of membrane fusion, and we delineate the molecular basis for its cross-reactivity. S2P6 reduces viral burden in hamsters challenged with SARS-CoV-2 through viral neutralization and Fc-mediated effector functions. Stem helix antibodies are rare, oftentimes of narrow specificity, and can acquire neutralization breadth through somatic mutations. These data provide a framework for structure-guided design of pan-betacoronavirus vaccines eliciting broad protection.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Betacoronavirus/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Viral Vaccines/immunology , Virus Internalization , Animals , Antibodies, Monoclonal/isolation & purification , Antibodies, Neutralizing/isolation & purification , Convalescence , Cricetinae , Cross Reactions , Humans , Immunoglobulin Fab Fragments/immunology , Immunoglobulin Fc Fragments/immunology , Jurkat Cells , Lung/immunology , Membrane Fusion/immunology , Neutralization Tests , Peptide Mapping , Protein Conformation, alpha-Helical , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Viral Load/immunology
17.
SN Compr Clin Med ; 3(12): 2435-2442, 2021.
Article in English | MEDLINE | ID: covidwho-1333147

ABSTRACT

Invasive mechanical ventilation (IMV) is the standard treatment in critically ill COVID-19 patients with acute severe respiratory distress syndrome (ARDS). When IMV setting is extremely aggressive, especially through the application of high positive-end-expiratory respiration (PEEP) values, lung damage can occur. Until today, in COVID-19 patients, two types of ARDS were identified (L- and H-type); for the L-type, a lower PEEP strategy was supposed to be preferred, but data are still missing. The aim of this study was to evaluate if a clinical management with lower PEEP values in critically ill L-type COVID-19 patients was safe and efficient in comparison to usual standard of care. A retrospective analysis was conducted on consecutive patients with COVID-19 ARDS admitted to the ICU and treated with IMV. Patients were treated with a lower PEEP strategy adapted to BMI: PEEP 10 cmH2O if BMI < 30 kg m-2, PEEP 12 cmH2O if BMI 30-50 kg m-2, PEEP 15 cmH2O if BMI > 50 kg m-2. Primary endpoint was the PaO2/FiO2 ratio evolution during the first 3 IMV days; secondary endpoints were to analyze ICU length of stay (LOS) and IMV length. From March 2 to January 15, 2021, 79 patients underwent IMV. Average applied PEEP was 11 ± 2.9 cmH2O for BMI < 30 kg m-2 and 16 ± 3.18 cmH2O for BMI > 30 kg m-2. During the first 24 h of IMV, patients' PaO2/FiO2 ratio presented an improvement (p<0.001; CI 99%) that continued daily up to 72 h (p<0.001; CI 99%). Median ICU LOS was 15 days (10-28); median duration of IMV was 12 days (8-26). The ICU mortality rate was 31.6%. Lower PEEP strategy treatment in L-type COVID-19 ARDS resulted in a PaO2/FiO2 ratio persistent daily improvement during the first 72 h of IMV. A lower PEEP strategy could be beneficial in the first phase of ARDS in critically ill COVID-19 patients.

18.
Science ; 373(6555): 648-654, 2021 08 06.
Article in English | MEDLINE | ID: covidwho-1295161

ABSTRACT

A novel variant of concern (VOC) named CAL.20C (B.1.427/B.1.429), which was originally detected in California, carries spike glycoprotein mutations S13I in the signal peptide, W152C in the N-terminal domain (NTD), and L452R in the receptor-binding domain (RBD). Plasma from individuals vaccinated with a Wuhan-1 isolate-based messenger RNA vaccine or from convalescent individuals exhibited neutralizing titers that were reduced 2- to 3.5-fold against the B.1.427/B.1.429 variant relative to wild-type pseudoviruses. The L452R mutation reduced neutralizing activity in 14 of 34 RBD-specific monoclonal antibodies (mAbs). The S13I and W152C mutations resulted in total loss of neutralization for 10 of 10 NTD-specific mAbs because the NTD antigenic supersite was remodeled by a shift of the signal peptide cleavage site and the formation of a new disulfide bond, as revealed by mass spectrometry and structural studies.


Subject(s)
COVID-19/virology , Immune Evasion , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , 2019-nCoV Vaccine mRNA-1273 , Amino Acid Substitution , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antigens, Viral/immunology , BNT162 Vaccine , COVID-19/immunology , COVID-19 Vaccines/immunology , Cryoelectron Microscopy , Humans , Models, Molecular , Mutation , Neutralization Tests , Protein Conformation , Protein Domains , Protein Interaction Domains and Motifs , Protein Subunits/chemistry , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry
19.
Science ; 372(6548): 1336-1341, 2021 06 18.
Article in English | MEDLINE | ID: covidwho-1234278

ABSTRACT

The identification of CD4+ T cell epitopes is instrumental for the design of subunit vaccines for broad protection against coronaviruses. Here, we demonstrate in COVID-19-recovered individuals a robust CD4+ T cell response to naturally processed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein and nucleoprotein (N), including effector, helper, and memory T cells. By characterizing 2943 S-reactive T cell clones from 34 individuals, we found that the receptor-binding domain (RBD) is highly immunogenic and that 33% of RBD-reactive clones and 94% of individuals recognized a conserved immunodominant S346-S365 region comprising nested human leukocyte antigen DR (HLA-DR)- and HLA-DP-restricted epitopes. Using pre- and post-COVID-19 samples and S proteins from endemic coronaviruses, we identified cross-reactive T cells targeting multiple S protein sites. The immunodominant and cross-reactive epitopes identified can inform vaccination strategies to counteract emerging SARS-CoV-2 variants.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , COVID-19/immunology , Immunodominant Epitopes , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Coronavirus/immunology , Cross Reactions , Epitopes, T-Lymphocyte/immunology , Genes, T-Cell Receptor beta , HLA-DP Antigens/immunology , HLA-DR Antigens/immunology , Humans , Immunologic Memory , Nucleocapsid Proteins/immunology , Protein Domains , Receptors, Antigen, T-Cell, alpha-beta/immunology , Spike Glycoprotein, Coronavirus/chemistry , T Follicular Helper Cells/immunology , T-Lymphocyte Subsets/immunology
20.
Cell ; 184(5): 1171-1187.e20, 2021 03 04.
Article in English | MEDLINE | ID: covidwho-1051523

ABSTRACT

SARS-CoV-2 can mutate and evade immunity, with consequences for efficacy of emerging vaccines and antibody therapeutics. Here, we demonstrate that the immunodominant SARS-CoV-2 spike (S) receptor binding motif (RBM) is a highly variable region of S and provide epidemiological, clinical, and molecular characterization of a prevalent, sentinel RBM mutation, N439K. We demonstrate N439K S protein has enhanced binding affinity to the hACE2 receptor, and N439K viruses have similar in vitro replication fitness and cause infections with similar clinical outcomes as compared to wild type. We show the N439K mutation confers resistance against several neutralizing monoclonal antibodies, including one authorized for emergency use by the US Food and Drug Administration (FDA), and reduces the activity of some polyclonal sera from persons recovered from infection. Immune evasion mutations that maintain virulence and fitness such as N439K can emerge within SARS-CoV-2 S, highlighting the need for ongoing molecular surveillance to guide development and usage of vaccines and therapeutics.


Subject(s)
COVID-19/immunology , Genetic Fitness , Immune Evasion , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Angiotensin-Converting Enzyme 2/chemistry , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/virology , Humans , Mutation , Phylogeny , SARS-CoV-2/chemistry , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/chemistry , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL